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An analytical solution is presented to the vectorial coupled wave equations for the steady state amplitudes of
two waves interacting in cubic photorefractive crystals. The solution accounts for pump depletion as well as an
arbitrary phase shift between the interference pattern and photorefractive grating. It is shown that bidirectional
vectorial amplification and polarization orthogonalization of the interacting beams take place in photorefractive
crystal with diffusion, drift or mixed mechanism of space-charge formation.
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I. INTRODUCTION

The photorefractive two-wave mixing(TWM) allows an
amplification of complex optical waves with high gain and
high signal-to-noise ratio, which is a basis for many applica-
tions of photorefractive materials[1–3]. The requirements
for the crystal sensitivity and response time vary strongly
from one application to another, nevertheless the cubic pho-
torefractive crystals nowadays meet the requirements of the
biggest part of the potential applications. As a result, the
cubic crystals of sillenite family(BSO, BTO, and BGO) and
cubic semiconductors(InP, GaAs, and CdTe) have been the
objects of many studies during the past years. All these crys-
tals possess sufficiently strong response only when an exter-
nal electric field, direct or alternating, is applied to assist in
the photorefractive grating recording. The ac field enhances
nonlocal photorefractive gratings, which are 90° phase
shifted with respect to the interference pattern. The recording
of local gratings with 0 or 180° shift is assisted by dc electric
field. The nonlocal character of the photorefractive grating
was considered for many years as the necessary condition for
light amplification in nonlinear media[1–4]. Recently, the
vectorial light amplification with unshifted local gratings in
cubic photorefractive crystals was demonstrated[5]. This
prompted us to develop a theory of the vectorial TWM,
which include both local and nonlocal gratings as well as the
case of an arbitrary phase shift between the interference pat-
tern and the grating. The latter is important since in the ma-
jority of the experiments the phase shift does not equal
strictly to 0 or 90°. Among the typical causes for this we can
mention an almost unavoidable bias voltage in the experi-
ments with ac field and the contribution of the diffusion
mechanism of the space-charge formation in the experiments
with dc field.

Recently, many experimental works were done with the
samples of cubic crystals of high optical quality, long length
of beam interaction and strong enhancement of the photore-
fractive response by high electric field[6–11]. These samples
have allowed reaching high gain of signal waves when the
depletion of the pump beam is inevitable. Therefore, it is of
utmost importance for the realistic modeling of the vectorial
TWM to include the effects of pump depletion, which were
neglected in many previous works[12–16].

Our analysis is based on the vectorial equations for the
steady-state amplitudes of the coupled waves in photorefrac-
tive crystal, the same as have been used in the other pub-
lished works[5,10,16,17]. Many effects associated with the
wave’s polarization evolution caused by the vectorial TWM
have been analyzed and understood using analytical or nu-
merical solutions of these equations. In particular we have
presented the numerical analysis of bidirectional light ampli-
fication in cubic crystals with local photorefractive gratings
[5]. The numerical analysis should give a deep inside into
mechanism of nonlinear optical effects due to inherent flex-
ibility to explore and manipulate the model. Nevertheless
analytical methods remain a powerful tool for the theoretical
investigation of these phenomena and we apply it here to
analyze in detail the vectorial bidirectional amplification in
crystals with local, nonlocal and arbitrary shifted photore-
fractive gratings.

The organization of our paper is as follows: In Sec. II we
describe a derivation of the coupled wave equations for the
case of arbitrary phase shift between the photorefractive grat-
ing and interference pattern. We specify the crystal configu-
rations, which should be analyzed using the results of present
work, and restrictions of the model. In Sec. III we obtain the
general solution of the coupled wave equations. Sections IV
and V are devoted to the applications of the obtained solution
to an analysis of the vectorial TWM in cubic crystals with
local and nonlocal gratings. Finally, in Sec. VI we describe
the peculiarities of TWM with gratings, which have the
phase shift different from 0 and 90°.

II. THEORETICAL MODEL

We consider vectorial TWM in cubic photorefractive
crystals without optical activity. Among these crystals are
numerous photorefractive semiconductors of point group
43m (e.g., CdTe, GaAs, InP). The results obtained neglecting
optical activity should be also applied in some extent to crys-
tals of the sillenite family(Bi12SiO20 and Bi12TiO20), when
the photorefractive response is strong enough. In this case
the inter-beam coupling dominates and the coupling between
the linearly polarized modes of each wave provoked by the
optical activity can be neglected. Assuming a typical experi-
mental configuration with the wave vector of the photore-
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fractive grating parallel to the external electric field we ex-
clude from consideration the refractive index changes
induced by the external electric field. The birefringence in-
duced by the external field affects the photorefractive TWM
only in the crystals with optical activity and/or in the case of
nonconcurrency between the external and space-charge
fields. We write the coupled wave equations for steady-state
amplitude vectorsS and R of reference and signal waves
using an approach similar to those of Refs.[11,16,17],

dS

dz
=

ik0n
3ESC

2
r̂R,

dR

dz
=

ik0n
3ESC

*

2
r̂S, s1d

wherek0=2p /l is the wave number,l is the wavelength,n
is the refractive index of the crystal, andESC is the complex
amplitude of the space-charge field. The matrixr̂ includes
the effective electro-optic coefficients, which depend on the
crystal cut. In the principal coordinate system this matrix has
a diagonal form

r̂ = Frx 0

0 ry
G . s2d

We calculate the complex amplitude of the space-charge field
as

ESC= Emaxmexpsifd, s3d

wherem=fSxszdRx
*szd+SyszdRy

*szdg / I0 is the depth of the in-
terference pattern modulation,Sxszd, Syszd, Rxszd, andRyszd
are the linearly polarized components of the vector ampli-
tudesS andR along the principal axesx andy, respectively,
I0= uSxu2+ uSyu2+ uRxu2+ uRyu2 is the total light intensity,Emax is
the maximum amplitude of the space-charge field, which
should be reached, whenm=1. Equation(3) determines the
linear dependence of the amplitudeESC on the modulation
depth of the interference patternm, though in general this
dependence should be in some extent nonlinear especially at
high modulation depth[18,19]. In the present work, we do
not consider the effects associated with the nonlinearity of
the photorefractive response. Recently it was shown that the
problem of nonlinear vectorial photorefractive TWM could
be reduced to the linear one by a renormalization of the
propagation coordinate[20]. The phase shiftf in Eq. (3)
represents the spatial displacement of the space-charge field
ESC with respect to the interference pattern or, in other
words, the phase shift between the photorefractive grating
and the interference pattern.

An analytical solution of Eq.(1) can be found for the
crystal configuration, which yieldsrx=−ry. This relation
should be met with the crystal configurations shown in Fig.
1. In the first configuration[Fig. 1(a)], the direction of the
light propagation coincides with the crystal axis[110], and
the external field is applied alongf110g. The principalx axis
is directed at 45° angle counted from thef110g direction, and
the effective electro-optic coefficients arerx=−ry=r41 with-
out an elasto-optic contribution, wherer41 is the component
of the electro-optic tensor of a cubic crystal. In the second

configuration[Fig. 1(b)], the light is directed along the crys-
tal axis [111], while the external field should be applied in
any transverse direction[1]. The principalx axis is directed
at the anglec=p /4−y /2, wherey is the angle between the
direction of the external fieldE0 and thef110g axis [1]. In
this case the effective electro-optic coefficients arerx=−ry
=Î2/3r41.

After the substitution of Eqs.(2) and (3) we rewrite Eq.
(1) in the form

dSx

dz
=

G

2I0
sSxRx

* + SyRy
*dRx,

dSy

dz
= −

G

2I0
sSxRx

* + SyRy
*dRy,

dRx

dz
= −

Gp

2I0
sSx

*Rx + Sy
*RydSx,

dRy

dz
=

G*

2I0
sSx

*Rx + Sy
*RydSy, s4d

whereG= ik0n
3rxEmaxexpsifd is the complex coupling con-

stant for the photorefractive grating, which has thef shift
with respect to the interference pattern.

The formally similar set of equations had been used pre-
viously for analysis of other nonlinear optical phenomena
concerned with photorefractive wave coupling in cubic pho-
torefractive crystals. Analytical solutions had been found for
four-wave mixing and phase conjugation[21]. Later the
similar theoretical approach was applied to the coupling mu-
tually incoherent pairs of beams, which share a common
grating [22]. The description of the polarization evolution
were presented for vectorial unidirectional TWM[23,24]. In
the present paper we focus our attention on the case of bidi-
rectional vectorial TWM in cubic crystal with photorefrac-
tive gratings possessing complex coupling constants. In our
case Eqs.(4) describe the coupling betweenx and y polar-
ization modes of the two beams. The interference ofx modes
affects the coupling ofy modes and vice versa via the inten-
sity modulation responsible for the recording of the photore-
fractive grating. According to Eqs.(4) the amplitudes incre-
ments ofx and y components have different signs. Taking
into account the tensor nature of the photorefractive effect
we should interpret this as ap-shift between the two refrac-
tive index gratings. One of them is responsible for the cou-
pling between x-polarized components of two beams,

FIG. 1. Mutual orientations of crystal axes, the principal axes of

the index ellipsoidx and y, and external electric fieldE→0 for two
configurations of cubic crystal. Light propagates along thez axis.
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whereas the other couplesy-polarized components. The en-
ergy flux associated with each polarization component has
opposite direction in respect to each other that yields a bidi-
rectional overall energy transfer between the beams as it will
be shown below.

III. ANALYTICAL SOLUTION

Following to Refs.[2,21] we rewrite Eqs.(4) for new
variablesu=Sx/Ry

* andv=Sy/Rx
* as

du

dz
= −

G

2I0
sb*u2 − su − bd,

dv
dz

=
G

2I0
sb*v2 + sv − bd, s5d

where s= I0x− I0y, I0x= uSxu2+ uRxu2, I0y= uSyu2+ uRyu2, and
b=SxRy+SyRx. As a result of energy conservation and the
reciprocity theoremI0x, I0y, andb are the constants of inte-
gration determined by the boundary conditions. The integra-
tion of Eqs.(5) gives

u = −
s

2b* tanhF− xz+ tanh−1Ss − 2b*u0

s
DG +

s

2b* ,

v = −
s

2b* tanhFxz− tanh−1Ss + 2b*v0

s
DG −

s

2b* , s6d

whereu0=Sxs0d /Ry
*s0d andv0=Sys0d /Rx

*s0d are the boundary

conditions,s=Îs2+4ubu2 and x=sG /4I0. Using the defini-
tions and the constants of integration, the intensities of the
polarization components can be written

IRx=
I0x − I0yuuu2

1 − uuvu2
, IRy=

I0y − I0xuvu2

1 − uuvu2
,

ISx= uuu2IRy, ISy= uvu2IRx. s7d

The solutions are valid for an arbitrary input polarization and
arbitrary phase shift between the interference pattern and the
refractive index grating, which allows analysis of the inten-
sities evolution of the interacting beams as well as evolution
of their polarizations.

IV. NONLOCAL GRATING, f=90°

First we analyze the analytical solution, Eqs(6), for the
case of the nonlocal grating withf=90°, when the coupling
constantG is a real number. To demonstrate how the direc-
tion of the energy flux depends on the polarization we re-
write the Eqs.(4) as increments of the beam intensitiesIS
= ISy+ ISy and IR= IRx+ IRy,

dIS
dz

=
G

I0
sISxIRx− ISyIRyd,

dIR
dz

= −
G

I0
sISxIRx− ISyIRyd. s8d

The sign of the intensity increments and so the direction of
energy flux depends on the sign of the factorsISxIRx

− ISyIRyd. The S-beam increases its intensity, when the light
polarization is along thex axis. The energy flux changes the
direction for opposite if the beams have the orthogonal po-
larization. When the light is polarized alongx or y axes, Eqs.
(8) reduce to the well known case of scalar TWM, which was
analyzed in many previous works. In the case of scalar TWM
the energy flux in is unidirectional and coincides with the
spatial shifts between the interference pattern and refractive
index gratings, which are different for two orthogonal polar-
izations. The process of the beam interaction in a long crystal
comes to the end when one of the beams is completely de-
pleted so all its energy, which was not absorbed by the crys-
tal, is transferred to the other beam.

The solutions presented by Eqs.(6) and (8) yield the bi-
directional amplification when bothx- and y-polarization
components are not zero at the input plane of the crystal.
Figure 2 shows the calculation results for 45° input polariza-
tion, whenSxs0d=Sys0d and Rxs0d=Rys0d. The calculations
were done for the beam intensity input ratio 1:10 and the
coupling constantG=20 cm−1. To trace the phase changes of
the polarization modes we present the fragment of the inter-
ference pattern calculated as the sum of the intensities of
both polarization components,Isx8 ,zd= Ixsx8 ,zd+ Iysx8 ,zd,
where I isx8 ,zd= uSiszdu2+ uRiszdu2+2uSiszdRiszducossKx8+wid,
i =x,y, K is the length of the grating vector, andwi is the
phase difference between the complex amplitudesSi andRi.
The axisx8 coincides with the direction of the external field
and the grating vector. Figure 2(a) shows that near input face

FIG. 2. Two beam coupling in a cubic crystal with local photo-
refractive grating.(a) Intensities of the polarization modes as func-
tions of the propagation distance. Panels(b), (c), and(d) show the
interference patternsIsx8 ,zd, Ixsx8 ,zd, andIysx8 ,zd, respectively.
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of the crystal, whenz,1 mm, the intensity increments of
different polarization components of the same beam have
different signs, thus the total intensity of each beam is almost
constant in this part of the crystal. They-component of the
weak beam,S, decreases and at the distancez<1 mm it
passes via the zero amplitude. At that pointSy changes the
sign, so atz.1 mm wy=180°, whilewx=0. The subsequent
increment of theSy-component leads to the decrement of the
overall interference pattern contrast, as it is shown in Fig.
2(b). The energy exchange between the beams, as well as the
changes of their polarization come to the end, when the
modulation depth of theIysx8 ,zd interference pattern ap-
proaches the modulation depth of theIxsx8 ,zd interference
pattern that isSxRx

* =−SyRy
* . This relation means that the two

beams have mutually orthogonal polarization and equal in-
tensities. Recently the polarization orthogonalization of the
beams interacting in cubic photorefractive crystals due to
vectorial TWM or multiwave mixing has been predicted as a
result of numerical study and demonstrated experi-
mentally [25].

V. LOCAL GRATING, f=0, 180°

In the case of the local photorefractive responseG= ib,
whereb is real and we rewrite Eqs.(4) as increments of the
beam intensities and phase shifts in the form

dIS
dZ

= − 4b
V

I0
sinwxy,

dIR
dZ

= 4b
V

I0
sinwxy,

dwx

dZ
= −

b

I0
sIRx− ISxd − b

VsIRx− ISxd
I0IRxISx

coswxy,

dwy

dZ
=

b

I0
sIRy− ISyd + b

VsIRy− ISyd
I0IRyISy

coswxy, s9d

whereV=ÎISxISyIRxIRy andwxy is the phase shift between the
interference patterns ofx and y polarization components,
wxy=wx−wy.

Equations(9) are reduced to the case of the scalar TWM,
when the interacting beams have onlyx or y polarization
component, which givesV=0. In this case, the obtained ex-
pressions predict the well-known fact that in the photorefrac-
tive crystal with the local response the interacting beams do
not change the intensities, nevertheless the phase changes
yield the inclination of the fringes of the interference pattern.
In the case of vectorial TWM, when the beams have both
polarization components, soVÞ0, the energy exchange be-
tween the beams is possible even in the crystal with the local
photorefractive response. The second condition for the non-
zero energy flux between the beams is a nonzero phase shift
between the interference patterns of the two polarization
componentIxsx8 ,zd andIysx8 ,zd, i.e.,wxyÞ0. As an example,
both conditions,VÞ0 andwxyÞ0, should be met when one
beam has a 45° polarization, while the other beam has circu-

lar or elliptic polarization. If we consider the net effect of the
beam interaction in the long photorefractive crystal, the con-
dition wxyÞ0 is not mandatory for the energy exchange be-
tween beams. Equations(9) show that the phase increments
dwx/dz and dwx/dz have opposite signs. Thus, vectorial
TWM first yields the phase shift between the interference
patterns of the polarization components without energy ex-
change between beams. In turn, the nonzero phase shift re-
sults in the change of the beam intensities. The signs of the
intensity increments and so the direction of the energy flux
between the beams depends on the sign of the phase shift
wxy. If the intensity of theR beam is higher than the intensity
of theS beam, thendwxy/dz,0 results in the energy transfer
from R to S beam. In the opposite case, when theS beam is
stronger, Eqs.(9) give dwxy/dz.0 and the energy flux is in
the opposite direction. Thus the vectorial beam coupling in
the photorefractive crystal with local grating always yields
the amplification of the weak beam independently of the mu-
tual position of the strong and weak beam, in other words,
the amplification is bidirectional.

Figure 3 shows the vectorial beam coupling in the photo-
refractive crystal with local response. These results were cal-
culated using Eqs.(9) for the beams with the intensity ratio
1:10, the coupling constantb=20 cm−1, and the 45° polar-
ization of the beams at the input of the crystal. In our previ-
ous work the similar results have been obtained as a numeri-
cal solution of the vectorial equations for steady-state TWM
[5]. As one can see in Fig. 3, near the input face of the crystal
sz=0d the fringes of the interference patternIxsx8 ,zd are
bended in the opposite direction with respect to the fringes of

FIG. 3. The same as Fig. 2 but for the crystal with local photo-
refractive grating.

A. V. KHOMENKO AND I. ROCHA-MENDOZA PHYSICAL REVIEW E 70, 066615(2004)

066615-4



Iysx8 ,zd, which results in nonzero phase shiftwxy. The overall
interference pattern,Isx8 ,zd= Ixsx8 ,zd+ Iysx8 ,zd, has straight
fringes with a constant contrast. In the long photorefractive
crystal the phase shiftwxy periodically changes the sign that
results in periodical inversion of the energy transfer between
two beams along thez axis.

VI. GRATINGS WITH ARBITRARY SHIFT f

A. Vectorial TWM

As was shown above, the vectorial beam coupling in the
crystal with unshifted photorefractive grating(f=0, 180°)
yields the monotonic changes of the beam intensities and
polarizations. If the crystal is long enough, the coupling re-
sults in equal intensities and orthogonal polarizations of the
beams at the output of the crystal. On the other hand, in the
crystal with nonlocal response, whenf= ±90°, two beams
periodically exchange by the intensities. Figure 4 shows the
beam coupling in the intermediate case, whenf=45°. The
results were calculated using the similar parameters as be-
fore: the intensity input ratio 1:10, 45° polarization at input
of the crystal, and the coupling constantuGu=20 cm−1.

In the intermediate case of the grating, the vectorial beam
coupling has similarities both with the local and nonlocal
cases. The beam intensities oscillate along the direction of
propagation due to the periodical inversion of the energy
transfer between the beams as in the case of the local grating.
At the same time the oscillations are damped and the inten-
sities approach a steady state, which coincides with what we

have discussed in the case of the nonlocal grating: the output
intensities of the beams are equal and the polarizations are
orthogonal. The fringes of the interference patterns are
bended, which is the specific feature of the beam coupling
with the local grating. At the same time Fig. 4 shows the
decrease of the contrast of the overall interference pattern
Isx8 ,zd, similar to what has been shown for the nonlocal
grating. These features of the beam coupling reveal in the
dependence of the photorefractive gain on the propagation
distance, which is shown in Fig. 5. The gain was calculated
as a ratiogszd=fuSszdu2/ uSs0du2g for the coupling constant
uGu=32.5 cm−1 and the input intensity ratio
j=fuRs0du2/ uSs0du2g=10. In the case of nonlocal grating,
whenf=90°, the gain monotonically approaches the satura-
tion valuegs=sj+1d /2 with the increase of the propagation
distance. When the gating is local, i.e.,f=0, the gain oscil-
lates around this value as

gszd = fsj − 1dsin2spz/Lpd + 1g, s10d

and the beam exchange by the intensities at the distance
Lp/2, whereLp=l /n3r uESCu [5]. All curves calculated for the
arbitrary phase shiftf situate between two extreme curves,
which correspond to the local and nonlocal gratings. Note
that for short interacting distances,z,5 mm, the local grat-
ing sf=0d yields the maximum amplification in comparison
with the gratings with any other phase shift. Obviously, this
result, which is valid for 45° input polarization, is not valid
in general. The polarization dependence of the gain is pre-
sented in Fig. 6 for different grating phase shiftsf. The
calculations were done using the same parameters as we used
to obtain the results presented in Fig. 5 and the crystal length
z=3.25 mm. This length approximately corresponds to the
first maximum of the gain for the local grating(see Fig. 5).
Comparing the results presented in Figs. 5 and 6 we came to
the conclusion that absolute maximum of the photorefractive
amplification should be reached with the nonlocal grating
sf=90°d and the linear polarization aligned along one of the
principal axes of the index ellipsoid. However, when the
photorefractive response is localsf=0d the gain reaches
maximum at 45° and245° polarizations, when two polariza-
tion modes have equal input amplitudes. This prediction has

FIG. 4. The same as Fig. 2 but for the crystal with 45° shifted
photorefractive grating.

FIG. 5. Photorefractive gain as a function of the propagation
distance plotted for different phase shiftsf between the interfer-
ence pattern and photorefractive grating.
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been confirmed experimentally in Ref.[5]. Similar to the
results presented in Fig. 5, the polarization dependence of the
gain for the arbitrary phase shiftf is somewhat in the middle
between the case of the local and nonlocal gratings.

B. Scalar TWM

TWM turns into its scalar version when the input polar-
ization of the two waves coincides with one of the two po-
larization modes. In other words, when the polarization angle
a is equal to 0°or 90°. Owing to the definition, the variables
u andv have a singularity ata=0° and 90°. Thus the scalar
TWM cannot be described directly by Eqs.(6) and(7) and so
the curves in Fig. 6 have breaks out at the angles, which are
corresponding to the polarization eigenmodes. Nevertheless
the polarization mode intensities presented by Eqs.(7) con-
verge to finite limits asa→0° or a→90°. These limits are
the solution for the scalar TWM, which is given by

IS= I0
uu0u2s1 − uv0u2d

1 − uu0v0u2
, IR = I0

1 − uu0u2

1 − uu0v0u2
, s11d

where

u0 = lim
a→0

au =
1
Îj

1 + tanhxz

1 −
j − 3

j + 1
tanhxz

,

v0 = lim
a→0

v
a

=
1
Îj

1 −
3j − 1

j + 1
tanhxz

1 − tanhxz
. s12d

HereI0 is the total intensity andj is the input intensity ratio.
According to the definitions ofu0 andv0, the relative phase
of the two waves can be written as

wRS= − i ln
u0

v0
Uv0

u0
U . s13d

When x=x* , the grating is nonlocal and the obtained solu-
tions (11)–(13) reduces to the well-known relations for the
wave intensities and relative phase[2,3]

IS=
I0

1 + j exps− xzd
, IR =

I0

1 + j−1 expsxzd
, wRS= 0.

s14d

Here the energy flux is unidirectional and the energy of one
of the waves should be completely transferred to the other
wave. In the case of local gratingsx=−x*d Eqs. (11)–(13)
predict that wave intensities are constant, while the relative
phase experiences a change always when two waves have
different intensities, which is also a well-known result[2,3].

Obtained solutions(11)–(13) for the scalar TWM is useful
for an analysis of scalar TWM with arbitrary shifted photo-
refractive grating. Figure 7 shows the result calculated using
these relations for the grating with intermediate shift,f
=45°. Here the changes of the wave intensities and the rela-
tive phase take place simultaneously. The sign of the incre-
ment ofwRS depends on the wave intensity ratio. In our cal-
culationsx.0, which leads to the negative increment ofwRS
near the input of the photorefractive crystal, whenIS, IR.
TWM results in an increase ofIS, and the increment ofwRS
changes the sign as theS-wave intensity becomes bigger than
IR. The changes of the relative phase result in V-shaped
fringes of the interference pattern of the interacting waves as
it is shown in Fig. 7(b).

VII. CONCLUSIONS

We have presented an analytical solution of the coupled-
wave equations for vector wave amplitudes that describe the
degenerate two beam coupling in cubic crystal with arbitrary
phase shift between the interference pattern and photorefrac-
tive grating. The developed theory allows the analytical de-
scription of the beam coupling when both interacting beams
experience strong changes of intensities and polarizations,
thus the approximation of a uniform grating is not accept-
able. It has been shown that the theory describes such effects

FIG. 6. Gain versus polarization angle for different phase shifts
of the photorefractive grating. FIG. 7. Scalar TWM with the 45°-shifted photorefractive grat-

ing. (a) Wave intensities and relative phase shift as functions of the
propagation distance.(b) Interference pattern of the interacting
waves.
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as the bidirectional amplification of the weak beam, polar-
ization orthogonalization and the bending of the interference
pattern fringes in cubic photorefractive crystal. We have
demonstrated the effect of the photorefractive gain oscilla-
tions and discussed the polarization dependence of the gain
for arbitrary shifted gratings.
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